Variational Gaussian Process Classiiers
نویسنده
چکیده
Gaussian processes are a promising non-linear interpolation tool (Williams 1995; Williams and Rasmussen 1996), but it is not straightforward to solve classiication problems with them. In this paper the variational methods of Jaakkola and Jordan (1996) are applied to Gaussian processes to produce an eecient Bayesian binary classiier.
منابع مشابه
Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classiiers
We present a variational Bayesian method for model selection over families of kernels classiiers like Support Vector machines or Gaus-sian processes. The algorithm needs no user interaction and is able to adapt a large number of kernel parameters to given data without having to sacriice training cases for validation. This opens the possibility to use sophisticated families of kernels in situati...
متن کاملStochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints
Gaussian process latent variable models (GPLVMs) are a probabilistic approach to modelling data that employs Gaussian process mapping from latent variables to observations. This paper revisits a recently proposed variational inference technique for GPLVMs and methodologically analyses the optimality and different parameterisations of the variational approximation. We investigate a structured va...
متن کاملVariational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression
We introduce a novel variational method that allows to approximately integrate out kernel hyperparameters, such as length-scales, in Gaussian process regression. This approach consists of a novel variant of the variational framework that has been recently developed for the Gaussian process latent variable model which additionally makes use of a standardised representation of the Gaussian proces...
متن کاملVariational Inference for Gaussian Process Models with Linear Complexity
Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian proc...
متن کاملRBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997